

6.004 Worksheet - 1 of 8 - Synchronization

Synchronization Worksheet

6.004 Worksheet - 2 of 8 - Synchronization

Problem 1.

Schro Dinger has a company that produces pairs of entangled particles, which are then packaged
and sent to manufacturers of quantum computers. Since it’s a complicated process, there are
multiple machines that produce particle pairs; each machine runs the Producer code shown below.

The completed particle pairs are placed in the particle buffer, where they take up 2 of the buffer
locations. There’s a single packaging machine that takes a particle pair from the particle buffer
and prepares it for shipment; the packing machine runs the Consumer code shown below.

To prevent any violations of the boundary conditions the following rules must be followed:

1. A production machine can only place a particle pair in the buffer if there are two spaces
available.

2. The particle pair must be stored in consecutive buffer locations, i.e., a particle from some
other production machine can’t appear between the particles that make up the pair.

3. The capacity of the buffer (100 particles, or 50 particle pairs) can’t be exceeded.
4. The packaging machine breaks if it accesses the buffer and finds it empty – it should only

proceed when there are at least two particles in the buffer.

Schro has heard of semaphores but is unsure how to use them to ensure the rules are followed.

• Please insert the appropriate semaphores, WAITs, and SIGNALs into the Producer and
Consumer code to ensure correct operation and to prevent deadlock.

• Be sure to indicate initial values for any semaphores you use.
• Remember: there are multiple producers and a single consumer!
• For full credit, use a minimum number of semaphores and don’t introduce unnecessary

precedence constraints.

Shared Memory
particle buffer[100]; // holds 100 particles

Semaphores and initial values: _________________________

Producer
PLoop:

 Produce pair P1, P2

 Place P1 in buffer

 Place P2 in buffer

 Go to PLoop

Consumer
CLoop:

 Fetch P1 from buffer

 Fetch P2 from buffer

 Package and ship

 Go to CLoop

6.004 Worksheet - 3 of 8 - Synchronization

Problem 2.

The following three processes are run on a shared processor. They can coordinate their execution
via shared semaphores that respond to the standard signal(S) and wait(S) procedures. Their intent
is to print the word HELLO. Assume that execution may switch between any of the three
processes at any point in time.

(A) Assuming that no semaphores are being used, for each of the following sequences of
characters, specify whether or not this system could produce that output.

 LEHO (YES/NO): ______ HLOE (YES/NO): ______ LOL (YES/NO): _______

(B) You would like to ensure that only the sequence HELLO can be printed and that it will be

printed exactly once. Add any missing wait(S) and signal(S) calls to the code below (where
S is one of a, b or c) to ensure that the three processes can only print HELLO exactly once.
Remember to specify the initial value for each of your semaphores. Recall that semaphores
cannot be initialized to negative numbers.

Process 1 Process 2 Process 3

Loop1: print(“H”) Loop2: print(“L”) Loop3: print(“O”)
 print(“E”) goto Loop2 goto Loop3
 goto Loop1

Semaphores: a = ___; b = ___; c = ___;

Process 1 Process 2 Process 3

Loop1: Loop2: Loop3:

 wait(a) wait(b) wait(c)

 print(“H”) print(“L”) print(“O”)

 print(“E”)

 signal(b)

 goto Loop1 goto Loop2 goto Loop3

6.004 Worksheet - 4 of 8 - Synchronization

Problem 3.

The following pair of processes share the variable counter, which has been given an initial
value of 10 before execution of either process begins:

(A) If Processes A and B are run on a timesharing system, there are six possible orders in which

the LD and ST instructions might be executed. For each of the orderings, please give the
final value of the counter variable.

 A1 A2 B1 B2: counter = __________ B1 A1 B2 A2: counter = __________

 A1 B1 A2 B2: counter = __________ B1 A1 A2 B2: counter = __________

 A1 B1 B2 A2: counter = __________ B1 B2 A1 A2: counter = __________

In the following two questions you are asked to modify the original programs for processes A and
B by adding the minimum number of semaphores and signal and wait operations to guarantee that
the final result of executing the two processes will be a specific value for counter. Give the initial
values for every semaphore you introduce. For full credit, your solution should allow all
execution orders that result in the required value.

(B) Add semaphores (with initial values) so that the final value of counter is 12.

(C) Add semaphores (with initial values), so that the final value of counter is not 13.

Process A Process B
… …
A1: LD(counter,R0) B1: LD(counter,R0)
 ADDC(R0,1,R0) ADDC(R0,2,R0)
A2: ST(R0,counter) B2: ST(R0,counter)
… …

Semaphores: __________________________

Process A Process B
… …
A1: LD(counter,R0) B1: LD(counter,R0)

 ADDC(R0,1,R0) ADDC(R0,2,R0)

A2: ST(R0,counter) B2: ST(R0,counter)
… …

Semaphores: __________________________

Process A Process B
… …
A1: LD(counter,R0) B1: LD(counter,R0)

 ADDC(R0,1,R0) ADDC(R0,2,R0)

A2: ST(R0,counter) B2: ST(R0,counter)
… …

6.004 Worksheet - 5 of 8 - Synchronization

Problem 4.

P1 and P2 are processes that run concurrently. P1 has two sections of code where section A is
followed by section B. Similarly, P2 has two sections: C followed by D. Within each process
execution proceeds sequentially, so we are guaranteed that A ⪯ B, i.e., A precedes B. Similarly,
we know that C ⪯ D. There is no looping; each process runs exactly once. You will be asked to
add semaphores to the programs – you may need to use more than one semaphore. Please give
the initial values of any semaphores you use. For full credit use a minimum number of
semaphores and don’t introduce any unnecessary precedence constraints.

(A) Please add WAIT(…) and SIGNAL(…) statements as needed in the spaces below so that the

precedence constraint B ⪯ C is satisfied, i.e., execution of P1 finishes before execution of
P2 begins.
 Add WAIT and SIGNAL statements so that B ⪯ C

Semaphore initial values: _______________

Process P1 Process P2

…Section A code… … Section C code…

…Section B code… …Section D code…

(B) Please add WAIT(…) and SIGNAL(…) statements as needed in the spaces below so that D ⪯

A or B ⪯ C, i.e., executions of P1 and P2 cannot overlap, but are allowed to occur in either
order.
 Add WAIT and SIGNAL statements so that D ⪯ A or B ⪯ C

Semaphore initial values: _______________

Process P1 Process P2

…Section A code… … Section C code…

…Section B code… …Section D code…

6.004 Worksheet - 6 of 8 - Synchronization

(C) Please add WAIT(…) and SIGNAL(…) statements as needed in the spaces below so that A ⪯

D and C ⪯ B, i.e., the first section (A and C) of both processes completes execution before
the second section (B or D) of either process begins execution.

 Add WAIT and SIGNAL statements so that A ⪯ D and C ⪯ B

Semaphore initial values: _______________

Process P1 Process P2

…Section A code… … Section C code…

…Section B code… …Section D code…

6.004 Worksheet - 7 of 8 - Synchronization

Problem 5.

The MIT Safety Office is worried about congestion on stairs
and has decided to implement a semaphore-based traffic-
control system. Most connections between floors have two
flights of stairs with an intermediate landing (see figure).
The constraints the Safety Office wishes to enforce are

• Only 1 person at a time on each flight of stairs
• A maximum of 3 persons on a landing
• As a few traffic constraints as possible
• No deadlock (a particular concern if there’s bidirectional travel)

Assume stair traffic is unidirectional: once on a flight of stairs, people continue up or down until
they’ve reached their destination floor (no backing up!), although they may pause at the landing.

There are three semaphores: they control the upper flight of stairs (SU), the landing (L), and the
lower flight of stairs (SL). Please provide appropriate initial values for these semaphores and
add the necessary wait() and signal() calls to the Down() and Up() procedures below. Note that
the Down() and Up() routines will be executed by many students simultaneously and the
semaphores are the only way their code has of interacting with other instances of the Down() and
Up() routines. To get full credit your code must avoid deadlock and enforce the stair and landing
occupancy constraints. Hint: for half credit, implement a solution where only 1 person at time is
in-between floors (but be careful of deadlock here too!).

// Semaphores shared by all students, provide initial values

semaphore SU = ________, SL = __________, L = __________;

// code for going downstairs
Down() {

 Enter SU;

 Exit SU/enter landing;

 Exit landing/enter SL;

 Exit SL;

}

// code for going upstairs
Up() {

 Enter SL;

 Exit SL/enter landing;

 Exit landing/enter SU;

 Exit SU;

}

6.004 Worksheet - 8 of 8 - Synchronization

Problem 6.

(A) Semaphore S is used to implement mutual exclusion on accesses to a shared buffer. No other

semaphores are used. What should its initial value be?

 Initial value for S: __________

(B) Indicate whether each of the following sets of semaphore-synchronized processes can

deadlock. The last two cases are variants of the first one; differences are underlined.

 Circle answers below

Initial semaphore values: s1 = 1, s2 = 1, s3 = 1
P1: P2: P3:
wait(s1); wait(s2); wait(s1);
wait(s2); wait(s3); wait(s2);
print(“1”); print(“2”); wait(s3);
signal(s2); signal(s3); print(“3”);
signal(s1); signal(s2); signal(s3);
 signal(s2);
 signal(s1);

Initial semaphore values: s1 = 1, s2 = 1, s3 = 1
P1: P2: P3:
wait(s1); wait(s2); wait(s2);
wait(s2); wait(s3); wait(s3);
print(“1”); print(“2”); wait(s1);
signal(s2); signal(s3); print(“3”);
signal(s1); signal(s2); signal(s1);
 signal(s3);
 signal(s2);

Initial semaphore values: s1 = 2, s2 = 1, s3 = 1
P1: P2: P3:
wait(s1); wait(s2); wait(s2);
wait(s2); wait(s3); wait(s3);
print(“1”); print(“2”); wait(s1);
signal(s2); signal(s3); print(“3”);
signal(s1); signal(s2); signal(s1);
 signal(s3);
 signal(s2);

Can it deadlock?

YES NO Can’t tell

Can it deadlock?

YES NO Can’t tell

Can it deadlock?

YES NO Can’t tell

